Regularity Criteria for a Turbulent Magnetohydrodynamic Model

نویسندگان

  • Yong Zhou
  • Jishan Fan
چکیده

and Applied Analysis 3 for any fixed T > 0. Then v,H can be extended beyond T > 0 if one of the following conditions is satisfied: 1 u ∈ C ( 0, T ;Ln/3 ) , 1.11 2 u ∈ L 0, T ;L with 2 p n q 3, n 3 < q ≤ n, 1.12 3 ∇u ∈ C ( 0, T ;Ln/4 ) , 1.13 4 ∇u ∈ L 0, T ;L with 2 p n q 4 with n 4 < q ≤ n 2 . 1.14 Remark 1.5. If we delete the harmless lower order terms ∂tu − Δu and ∂tB − ΔB in 1.1 and 1.2 , then we have −∂tΔu Δ2u u · ∇ u ∇π B · ∇ B, −∂tΔB Δ2B u · ∇ B − B · ∇ u 0, 1.15 then the system 1.15 has the following property: if u, B, π is a solution of 1.15 , then for all λ > 0, uλ, Bλ, πλ x, t ( λ3u, λ3B, λ6π )( λx, λ2t ) 1.16 is also a solution. In this sense, our conditions 1.8 and 1.11 – 1.14 are scaling invariant optimal . Equations 1.8 and 1.12 do not hold true for q > n. But we also can establish regularity criteria for q > n in nonscaling invariant forms. In Section 2, we will prove Theorem 1.2. In Section 3, we will prove Theorem 1.4. 2. Proof of Theorem 1.2 Since it is easy to prove that the problem 1.1 – 1.5 has a unique local smooth solution, we only need to establish the a priori estimates. The proof of the case n ≤ 4 is easier and similar and thus we omit the details here, we only deal with the case n ≥ 5. Testing 1.1 by u, using 1.3 and 1.4 , we find that 1 2 d dt ∫ u2 |∇u|dx ∫ |∇u| |Δu|dx ∫ B · ∇ B · udx. 2.1 4 Abstract and Applied Analysis Testing 1.2 by B, using 1.3 and 1.4 , we see that 1 2 d dt ∫ B2 |∇B|dx ∫ |∇B| |ΔB|dx ∫ B · ∇ u · B dx − ∫ B · ∇ B · udx. 2.2 Summing up 2.1 and 2.2 , we easily get 1.6 . I Let 1.8 hold true. In the following calculations, we will use the product estimates due to Kato and Ponce 3 : ∥Λsfg∥Lp ≤ C ∥Λsf∥Lp1 ∥g∥Lq1 ∥f∥Lp2 ∥Λsg∥Lq2 ) , 2.3 with s > 0, Λ : −Δ 1/2 and 1/p 1/p1 1/q1 1/p2 1/q2. The proof of the case q n is easier and similar, we omit the details here. Now we assume n/3 < q < n. Applying Λ to 1.1 , testing by Λv, using 1.4 , we deduce that 1 2 d dt ∫ |Λsv|dx ∫ ∣∣Λs 1v ∣∣ 2 dx ∫ Λ B · ∇ B −Λs u · ∇ u Λv dx ∫ Λ div B ⊗ B − u ⊗ u Λv dx. 2.4 Similarly, applying Λ to 1.2 , testing by ΛH, using 1.4 , we infer that 1 2 d dt ∫ |ΛsH|dx ∫ ∣∣Λs 1H ∣∣ 2 dx ∫ Λ curl u × B ·ΛsH dx. 2.5 Summing up 2.4 and 2.5 , using 2.3 , we get 1 2 d dt ∫ |Λsv| |ΛsH|dx ∫ ∣∣Λs 1v ∣∣ 2 ∣∣Λs 1H ∣∣ 2 dx ∫ Λ div B ⊗ B − u ⊗ u Λv dx ∫ Λ curl u × B ·ΛsH dx ≤ C ( ‖B‖Lq ∥∥Λs 1B ∥∥ Lt1 ‖u‖Lq ∥∥Λs 1u ∥∥ Lt1 ) ‖Λv‖Lt2 C ( ‖u‖Lq ∥∥Λs 1B ∥∥ Lt1 ‖B‖Lq ∥∥Λs 1u ∥∥ Lt1 ) ‖ΛH‖Lt2 Abstract and Applied Analysis 5 ≤ C ‖u‖Lq ‖B‖Lq ∥∥Λs 1u ∥∥ Lt1 ∥∥Λs 1B ∥∥ Lt1 ) ‖Λv‖Lt2 ‖ΛH‖Lt2 C‖ u, B ‖Lq ∥∥Λs 1 u, B ∥∥ Lt1 ‖Λ v,H ‖Lt2 ( 1 q 1 t1 1 t2 1, 2 ≤ t2 ≤ 2n n − 2 < t1 ≤ 2n n − 4 )and Applied Analysis 5 ≤ C ‖u‖Lq ‖B‖Lq ∥∥Λs 1u ∥∥ Lt1 ∥∥Λs 1B ∥∥ Lt1 ) ‖Λv‖Lt2 ‖ΛH‖Lt2 C‖ u, B ‖Lq ∥∥Λs 1 u, B ∥∥ Lt1 ‖Λ v,H ‖Lt2 ( 1 q 1 t1 1 t2 1, 2 ≤ t2 ≤ 2n n − 2 < t1 ≤ 2n n − 4 ) ≤ C‖ u, B ‖Lq ∥∥Λs−1 v,H ∥∥ Lt1 ‖Λ v,H ‖Lt2 ≤ C‖ u, B ‖Lq‖Λ v,H ‖1−θ1 L2 ∥∥Λs 1 v,H ∥∥ θ1 L2 ‖Λ v,H ‖1−θ2 L2 ∥∥Λs 1 v,H ∥∥ θ2 L2 C‖ u, B ‖Lq‖Λ v,H ‖2−θ1−θ2 L2 ∥∥Λs 1 v,H ∥∥ θ1 θ2 L2 ≤ 1 2 ∥∥Λs 1 v,H ∥∥ 2 L2 C‖ u, B ‖ 2−θ1−θ2 Lq ‖Λ v,H ‖L2 , 2.6 which implies ‖ v,H ‖L∞ 0,T ;Hs ‖ v,H ‖L2 0,T ;Hs 1 ≤ C. 2.7 Here we have used the following Gagliardo-Nirenberg inequalities: ∥∥Λs−1 v,H ∥∥ Lt1 ≤ C‖Λ v,H ‖1−θ1 L2 ∥∥Λs 1 v,H ∥∥ θ1 L2 , ( − n t1 1 − θ1 ( 1 − n 2 ) θ1 ( 2 − n 2 )) ‖Λ v,H ‖Lt2 ≤ C‖Λ v,H ‖1−θ2 L2 ∥∥Λs 1 v,H ∥∥ θ2 L2 , ( − n t2 1 − θ2 ( − 2 ) θ2 ( 1 − n 2 )) . 2.8 II Let 1.9 hold true. In the following calculations, we will use the following commutator estimates due to Kato and Ponce 3 : ∥∥Λs(fg) − fΛsg∥Lp ≤ C ∥∇f∥Lp1 ∥∥Λs−1g ∥∥ Lq1 ∥Λsf∥Lp2 ∥g∥Lq2 ) , 2.9 with s > 0 and 1/p 1/p1 1/q1 1/p2 1/q2. The proof of the case q n/2 is easier and similar, we omit the details here. Now we assume n/4 < q < n/2. 6 Abstract and Applied Analysis Applying Λ to 1.1 , testing by Λu, and using 1.3 and 1.4 , we deduce that 1 2 d dt ∫ |Λsu| ∣∣Λs 1u ∣∣ 2 dx ∫ ∣∣Λs 1u ∣∣ 2 ∣∣Λs 2u ∣∣ 2 dx − ∫ Λ u · ∇u − u · ∇Λsu Λu dx ∫ Λ B · ∇B − B · ∇ΛsB Λu dx ∫ B · ∇ ΛB ·Λsu dx. 2.10 Applying Λ to 1.2 , testing by ΛB, using 1.3 and 1.4 , we infer that 1 2 d dt ∫ |ΛsB| ∣∣Λs 1B ∣∣ 2 dx ∫ ∣∣Λs 1B ∣∣ 2 ∣∣Λs 2B ∣∣ 2 dx − ∫ Λ u · ∇B − u∇ΛsB ΛB dx ∫ Λ B · ∇u − B · ∇Λsu ΛB dx ∫ B · ∇ Λu ·ΛsB dx. 2.11 Summing up 2.10 and 2.11 , noting that the last terms of 2.10 and 2.11 disappeared, and using 2.9 , we obtain 1 2 d dt ∫ |Λsu| ∣∣Λs 1u ∣∣ 2 |ΛsB| ∣∣Λs 1B ∣∣ 2 dx ∫ ∣∣Λs 1u ∣∣ 2 ∣∣Λs 2u ∣∣ 2 ∣∣Λs 1B ∣∣ 2 ∣∣Λs 2B ∣∣ 2 dx − ∫ Λ u · ∇u − u · ∇Λsu Λu dx ∫ Λ B · ∇B − B · ∇ΛsB Λu dx − ∫ Λ u · ∇B − u · ∇ΛsB ΛB dx ∫ Λ B · ∇u − B · ∇Λsu ΛB dx ≤ C‖∇u‖Lq‖Λu‖L2q/ q−1 C‖∇B‖Lq‖ΛB‖L2q/ q−1 ‖Λu‖L2q/ q−1 C‖∇B‖Lq‖ΛB‖L2q/ q−1 C‖∇u‖Lq‖ΛB‖L2q/ q−1 ≤ C‖ ∇u,∇B ‖Lq‖Λ u, B ‖L2q/ q−1 ≤ C‖ ∇u,∇B ‖Lq ∥∥Λs 1 u, B ∥∥ 2 1−θ L2 ∥∥Λs 2 u, B ∥∥ 2θ L2 ≤ 1 2 ∥∥Λs 2 u, B ∥∥ 2 L2 C‖ ∇u,∇B ‖ 1−θ Lq ∥∥Λs 1 u, B ∥∥ 2 L2 , 2.12 Abstract and Applied Analysis 7 which yields ‖ u, B ‖L∞ 0,T ;Hs 1 ‖ u, B ‖L2 0,T ;Hs 2 ≤ C. 2.13and Applied Analysis 7 which yields ‖ u, B ‖L∞ 0,T ;Hs 1 ‖ u, B ‖L2 0,T ;Hs 2 ≤ C. 2.13 Here we have used the following Gagliardo-Nirenberg inequality: ‖Λ u, B ‖L2q/ q−1 ≤ C ∥∥Λs 1 u, B ∥∥ 1−θ L2 ∥∥Λs 2 u, B ∥∥ θ L2 , 2.14 with − − 1 2q n 1 − θ ( 1 − n 2 ) θ ( 2 − n 2 ) , 2n n − 2 ≤ 2q q − 1 ≤ 2n n − 4 . 2.15 This completes the proof. 3. Proof of Theorem 1.4 We only need to prove the a priori estimates. Testing 1.1 and 1.2 by v,H , using 1.3 and 1.4 , and summing up the results, we have 1 2 d dt ∫ v2 H2dx ∫ |∇v| |∇H|dx ∫ u · ∇ u ·Δudx − ∫ B · ∇ B ·Δudx ∫ u · ∇ B ·ΔB dx − ∫ B · ∇ u ·ΔB dx I1 I2 I3 I4. 3.1 Using 1.4 , we see that

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity criteria for a magnetohydrodynamic-α model

We study the n-dimensional magnetohydrodynamic-α (MHD-α) model in the whole space. Various regularity criteria are established with n ≤ 8, in this paper. As a corollary, the strong solution to this model exists globally, as n ≤ 4. When n = 4, uniqueness of weak solutions is also proved.

متن کامل

Regularity Criteria for the Three-dimensional Magnetohydrodynamic Equations

This paper studies the three-dimensional density-dependent incompressible magnetohydrodynamic equations. First, a regularity criterion is proved which allows the initial density to contain vacuum. Then we establish another blow-up criterion in the Besov space Ḃ0 ∞,2 when the positive initial density is bounded away from zero. Third, we prove a global nonexistence result for initial density with...

متن کامل

Boundary regularity criteria for suitable weak solutions of the magnetohydrodynamic equations

We present some new regularity criteria for suitable weak solutions of magnetohydrodynamic equations near boundary in dimension three. We prove that suitable weak solutions are Hölder continuous near boundary provided that either the scaled L x,t-norm of the velocity with 3/p+ 2/q ≤ 2, 2 < q <∞, or the scaled L x,t-norm of the vorticity with 3/p+ 2/q ≤ 3, 2 < q <∞ are sufficiently small near th...

متن کامل

Turbulent Magnetohydrodynamic Elasticity: I. Boussinesq-like Approximations for Steady Shear

We re-examine the Boussinesq hypothesis of an effective turbulent viscosity within the context of simple closure considerations for models of strong magnetohydrodynamic turbulence. Reynolds-stress and turbulent Maxwell-stress closure models will necessarily introduce a suite of transport coefficients, all of which are to some degree model-dependent. One of the most important coefficients is the...

متن کامل

Remarks on the regularity criteria of three-dimensional magnetohydrodynamics system in terms of two velocity field components

Articles you may be interested in Remarks on the regularity criteria of generalized MHD and Navier-Stokes systems Regularity criteria of weak solutions to the three-dimensional micropolar flows Remarks on the blow-up criteria for three-dimensional ideal magnetohydrodynamics equations We study the three-dimensional magnetohydrodynamics system and obtain its regularity criteria in terms of only t...

متن کامل

Nonlinear cascades in two-dimensional turbulent magnetoconvection.

The dynamics of spectral transport in two-dimensional turbulent convection of electrically conducting fluids is studied by means of direct numerical simulations in the frame of the magnetohydrodynamic Boussinesq approximation. The system performs quasioscillations between two different regimes of small-scale turbulence: one dominated by nonlinear magnetohydrodynamic interactions; the other gove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014